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The elastic and thermodynamic properties of the antiperovskite superconductor MNNi3 (M=Zn, Mg, Al) are investigated by 
first-principles calculations. The calculated structural parameters and elastic properties of MNNi3 are in good agreement with 
experimental data and the available theoretical data. From the high pressure elastic constants, ZnNNi3, MgNNi3 and AlNNi3 
are predicted that they are not stable at a pressure above 61.2GPa, 113.3GPa and 122.4GPa, respectively. By the Debye 
model, the thermodynamic properties such as the Grüneisen parameter γ and bulk modulus (BT and BS) under pressures 
and temperatures are also successfully obtained.  
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1. Introduction 
 
Soon after the discovery of 8 K in Ni-rich 

intermetallic antiperovskite superconductor compound 
MgCNi3 [1], a lot of attentions have been aroused on the 
iso-structural cubic antiperovskites for their many puzzling 
physical properties and important technical applications. 
The compound has the classical cubic perovskite structure 
with space group Pm-3m. At the same time, many 
researchers have been focused on the development of 
design principles, synthesis and investigations of related 
antiperovskite-type carbides. So many cubic 
antiperovskites have been synthesized and their physical 
properties have been investigated, such as (Mg, Zn) CNi3 
[2], (Al, Ga, Cd)CNi3 [3-5] and In0.95CNi3 [6]. It is 
noteworthy that only MgCNi3 and CdCNi3 indicate 
superconductivity. Theoretical calculations of these 
antiperovaskite [7-12] showed a large narrow density of 
states (DOS) peak in the vicinity of the Fermi level (EF). 
The DOS at EF is not large enough to induce magnetic 
instability [13], but is associated with the superconducting 
properties [11]. Numerous efforts [13–18] have been made 
with hole-doped MgCNi3 in an attempt to shift the Fermi 
level, thereby leading an increase of the DOS at EF, 
whereupon Tc was found to decrease. However, some 
groups successfully enhanced the Tc by using pressure, but 
the cause is still controversial and remains an open 
problem [16, 17]. Kumary et al [13] considered that a 
lattice softening or a structural phase transition lead 
enhancement of TC under pressure. Zhang et al [18] 
investigated the elastic constants and electronic structures 
of MgCNi3 under pressure, they found MgCNi3 is not 

stable above 58.4GPa and analyzed the cause of the 
enhancement of Tc with pressure.   

Very recently, a first new superconducting (TC~3K) 
Ni-rich nitrogen-containing antiperovskite ZnNNi3 has 
been successfully synthesized by replacing carbon by 
nitrogen [19]. It provides another route of synthesizing 
superconducting compound though its superconducting 
temperature is very low. Due to a great deal of attentions 
on antiperovskite ZnNNi3, several research groups have 
investigated the physical properties of ZnNNi3 [20-23]. 
However ， these authors only studied the structural 
properties and electronic structure of MNNi3 at zero 
pressure, there are few investigations on the properties of 
MNNi3(M=Zn, Al, Mg) under pressures. Especially the 
elastic constants under pressure are very important to 
determine anisotropies and thermodynamic properties; the 
electronic structure under pressures is associated with the 
superconducting temperature. Therefore, it is very 
significant to investigate mechanical stability, elastic and 
thermodynamic properties of MNNi3 under pressure.  

 
 
2. Theoretical methods 
 
2.1. Total energy electronic structure calculations 
 
In the electronic structure calculations, the ultrasoft 

pseudopotentials introduced by Vanderbilt [24] have been 
employed for all the ion-electron interaction. The effects 
of exchange-correlation interaction are treated within the 
generalized gradient approximation of Perdew, Burke, and 
Ernzerhof (GGA-PBE) [25]. A plane wave basis set with 
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cut-off energy 800.00 eV is applied. Pseudo atomic 
calculations are performed for Zn 3d104s2，Mg 2p6 3s2，
Al 3s2 3p1, Ni 3d8 4s2 and N 2s22p3. As for the 
Brillouin-zone sampling, we use the 12×12×12 k-points. 
The self-consistent convergence of the total energy is at 
10-7 eV/Atom. Hydrostatic pressure, coupled with the 
variable cell approach, is applied within the 
Parrinello–Rahman method to perform a full optimization 
of the cell structure for each target external pressure. All 
these total energy electronic structure calculations are 
implemented by using the CASTEP code [26, 27].  

 
2.2 Elastic properties 
 
To calculate the elastic constants under pressure, we 

applied the volume-conserving method. The complete 
elastic constant tensor was determined from calculations 
of the stresses induced by small deformations of the 
equilibrium primitive cell, The elastic constants Cijkl  are 
then determined as [28-30]: 
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where sij and ekl are the applied stress and Eulerian strain 
tensors, and X and x are the coordinates before and after 
the deformation. For the isotropic stress, the elastic 
constants are defined as [29-31]: 
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where Cijkl is the second-order derivatives with respect to 
the infinitesimal strain (Eulerian). For cubic crystals 
MNNi3, there are three independent elastic constants, i.e. 
C11, C12, C44. 

For a cubic structure MNNi3, the bulk modulus B, the 
shear modulus G and the Young’s modulus E are taken as   
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The Debye temperature may be estimated from the 

average sound velocity Vm [32]: 
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where h is Planck’s constants, k is Boltzmann’s constant, 
NA is Avogadro’s number, n is the number of atoms per 
formula unit, M is the molecular mass per formula 
unit, ρ is the density, and Vm is obtained from [32] 
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where Vs and Vl  are the shear and longitudinal sound 
velocities, respectively, which can be related to the shear 
and bulk moduli by the Navier's equations [33]:  
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2.3 Thermodynamic properties  
 
To investigate the thermodynamic properties of 

MNNi3, we apply the quasi-harmonic Debye model [34], 

in which the phononic effect is considered, and the 
non-equilibrium Gibbs function G*(V; P, T) takes the form 
of 

));(()(),;(* TVAPVVETPVG Vib Θ++=  (10) 

 
where E(V) is the total energy per unit cell, PV 
corresponds to the constant hydrostatic pressure condition, 
Θ(V) is the Debye temperature, and Avib is the vibrational 
Helmholtz free energy that can be written as  
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with the D(Θ/T) representing the Debye integral, n 
denoting the number of atoms per formula unit, and Θ is 
the Debye temperature. 
   By solving the following equation with respect to V 
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one could obtain the thermal equation of state, V (P, T) 
and the thermal expansion coefficient α as follows 

)( VBC TVγα =                    (13) 

where the isothermal bulk modulus BT, the heat capacity 
CV and the Grüneisen parameter γ are expressed as 

TPT V
TPVGVTPB ,22

2

]),;(*[),(
∂

∂
=       (14) 

 
ln ( )

ln
d V

d V
γ Θ
= −                   (15) 

 
3. Results and discussions 
 
3.1 Structural properties 
 
For the non-oxide perovskite-type superconductor 

MNNi3, a series of lattice constant a are set to calculate the 

total energy E and the corresponding primitive cell volume 
V, and then the obtained E-V data is fitted to the 
Birch-Murnaghen equation of state (EOS) [35]. The 
obtained equilibrium lattice constants a, zero-pressure 
bulk modulus B0 and its pressure derivation B0' of MNNi3 
(M=Zn, Al, Mg) at P=0 and T=0 are summarized in Table 
1, together with other theoretical [20-23] and experimental 
data [19]. In Table 1, it is easily found that the calculated 
values are in good consistent with the obtained theoretical 
[20-23] and experimental data [19]. Simultaneously, the 
bond lengths of Zn-Ni, N-Ni are also showed in Table 1. It 
is found that the relations of the bond length in MNNi3 
are:    
 

dZn-Ni <dAl-Ni <dMg-Ni,   dN-Ni(ZnNNi3) <dN-Ni 
(AlNNi3)<dN-Ni(MgNNi3) 

 
Unfortunately, to our best knowledge, no experiment 

data for bulk modulus and bond length of MNNi3 are 
available to be compared with our theoretical results.  

 
Table 1 The calculated equilibrium parameter a (Å), bulk modulus B0 (GPa), pressure derivative bulk modulus B0

' and the bond 
length ZnNNi3, MgNNi3, and AlNNi3 at P=0 and T=0, respectively. 

 
MNNi3  Present work  Other work 
ZnNNi3 a  

B0 
B0′ 
dZn-Ni 
dN-Ni 

3.765(3.756a) 
192.1 
4.97 
2.681 
1.896 

3.77b, 3.770c 3.719d, 3.769e 
198.92b  225.61d 

4.75d 

MgNNi3 a  
B0 
B0′ 
dMg-Ni 
dN-Ni 

3.841 
169.3 
4.80 
2.715 
1.920 

3.82b, 3.815c   
188.53b  

AlNNi3 a  
B0 
B0′ 
dAl-Ni 
dN-Ni 

3.794 
197.6 
4.82 
2.683 
1.897 

3.777c

a Ref [19](experiment data) b Ref[20] cRef [21] d Ref [22] e Ref [23] 
 

3.2 Elastic constants and mechanical stability 
under pressure 

 
The elastic constants of solids provide a link between 

the mechanical and dynamical behaviors of crystals, and 
give important information concerning the nature of the 
forces operating in solids. The elastic constants of C11, C12 

and C44 are listed in Table 2. It is shown that the 
differences between our results and Li et al [20] are a bit 
large. Since there are no experimental data to compare 
with, we listed the available theoretical data of ZnNNi3. 
The lattice parameters from our calculations seem to be 
better than those by Li et al. Then we think that our 
calculations for elastic constants should be more reliable.  
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Table 2 The calculated elastic constants C11, C12, C44, bulk modulus B, shear and Young modulus(GPa), B/G and Debye 

temperature ΘD(K). 

 

  C11 C12 C44 B G E B/G ΘD    

ZnNNi3 present 
other cal. 
 

321.7 
354.28a 
381.6b  

364.2c 

394.57d 

125.1 
134.01a 
116.5b  
124.9c 

140.28d 

35.4 
48.06a 

17.9b 
32.69c 

55.39d 

190.6 
207.43a 

54.1 
48.06a 

251.6 
229.1a 

 3.52 315 
276.47e 
271.57f 
287.49g 
336h 

MgNNi

3 

present 
other cal. 

317.8 
336.19a 

112.4 
125.31a 

55.8 
48.96a 

180.8 
195.60a 

69.6 
48.96a 

259.1  2.59 397 

AlNNi3 present 
other cal. 

354.7 
431.4b 

122.4 
96.1b 

50.0 
48.0b 

199.9 
207.8b 

70.6 
81.5b 

290.9 
216.3b 

  2.83 391 

a Ref [19](experiment data) b Ref[20] c Ref [21] d Ref [22] e GGA-WC, Ref[22] f GGA-PBE, Ref[22] g LDA, Ref[22] h 
Ref[19] 
 

The elastic constants are estimated from first 
principles calculations for cubic MNNi3 perovskite. 
However, the materials are often used in polycrystalline 
aggregates; therefore it is useful to estimate the 
corresponding parameters of the polycrystalline species. 
For these purposes we have utilized the Voigt-Reuss-Hill 
approximation to calculate the main mechanical 
parameters for cubic MNNi3 perovskite (Table 2), namely, 
bulk modulus B, shear modulus G and Young's modulus E 
from the elastic constants of the single crystals. The bulk 
modulus B of MNNi3 (M=Zn, Mg, Al) are in good 
agreement with the ones obtained from the equation of 
state fitting. It may be an estimation of the reliability and 
accuracy of our calculated elastic constants for MNNi3. 

The ratio between the bulk and the shear modulus, 
B/G, has been proposed by Pugh to predict brittle or 
ductile behavior of materials. The shear modulus G 
represents their resistance to plastic deformation, while B 
represents their resistance to fracture. A high B/G ratio is 
associated with ductility, whereas the low value 
corresponds to the brittle nature. The critical value which 
separate ductile and brittle materials is around 1.75, i.e., if 
B/G>1.75, the material behaves in ductile manner, 
otherwise the materials behaves in brittle manner. We 
have found that B/G rations are 3.52, 2.59, 2.83 for MNNi3 
(M=Zn, Mg, Al) (also listed in Table 2) respectively, 
indicating that MNNi3 are ductile.  

The Debye temperature is one of the important 
thermodynamic parameters and is closely related to many 
thermophysical properties of solids, such as specific heat, 
thermal expansion, vibrational entropy, sound velocities, 
hardness and melting temperature. The Debye 
temperatures ΘD of MNNi3 are obtained from Eq. (7)-Eq. 
(9) , which are also listed in Table 2, together with other 
experimental19 and theoretical data [22]. The calculated 
Debye temperature ΘD of ZnNNi3 is 315K, which is more 
closely to the experimental data than other theoretical data. 

The Debye temperatures in ZnNNi3, AlNNi3 and MgNNi3 
gradually increase.  
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   Fig. 1 The dependence of Cij of MNNi3 on pressure. 

 
The elastic constants of MNNi3 under pressure, obtained 
for the first time, are illustrated in Fig. 1. It is seen that C11, 
C12 and C44 increase with the enhancement of pressure. 
The change of C11 is more sensitive to pressure than other 
three, while C44 is the most unresponsive one. Recently, 
elastic constants and mechanical stabilities of crystals have 
attracted lots of interest from physicists. In 2002, Sin’ko 
and Smirov [36] deduced the conditions of mechanical 
stability from elastic constants. As is known, for a cubic 
crystal, the mechanical stability under isotropic pressure is 
judged from the following condition:     
 

44
~C >0, 11

~C > |~| 12C , 11
~C +2 12

~C >0,        (16) 

where ααC = ααC - P (α =1, 4), 12C = 12C +P. By 



148                                   Hongcun Zhai, Xiaofeng Li, Guangfu Ji 
 

fitting 44
~C data to second-order polynomials, we have the 

following relations   

        44
~C  = α + βP - γP2.           (17) 

 
Fig. 2 shows the 44

~C versus pressure for MNNi3 
(M=Zn, Mg, Al). When 44

~C >0 is no longer fulfilled, 
indicating that MNNi3 is not mechanical stable at 
pressures above the pressure of 44

~C = 0. The critical 
pressures of MNNi3 (M=Zn, Mg, Al) are 61.2GPa, 
113.3GPa and 122.4GPa, respectively. In our former work, 
the obtained critical pressure of MgCNi3 is 58.4GPa [18], 
which is reasonable by comparing some experimental data. 
In fact, according to our experience, the phase transition 
pressure should be smaller than the critical mechanical 
stable pressure.         
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Fig. 2 The mechanical stability of MNNi3 versus pressure 

at 0 K. 

 
3.3 Thermodynamic properties 
 
Through the quasiharmonic Debye model, one can 

calculate the thermodynamic quantities of cubic MNNi3 at 
any temperature and pressure from the E-V data calculated 
at T =0 and P =0. The dependences of isothermal and 
adiabatic bulk moduli (BT, BS) of MNNi3 on temperature 
are illustrated in Fig. 3. It is easily seen that the isothermal 
and adiabatic bulk moduli (BT, BS) gradually increases 
with temperature in MgNNi3, ZnNNi3 and AlNNi3. It also 
can be found that BT and BS are nearly constant from 0 K 
to 100K and then decrease almost linearly with increasing 
temperatures, as is obvious from the relationship BS = BT(1 
+ αγT). BT and BS coincide at low temperature and then 
diverge with rising T. It is found that the relationships 
between bulk modulus and pressure are nearly linear at 
various temperatures. However, the variety of dBT /dT is 
much stronger than that of dBS/dT.  

The Grüneisen parameter γ could describe the 
alteration in vibration of a crystal lattice based on the 
increase or decrease in volume as a result of temperature 

change. Recently, it has been widely used to characterize 
and extrapolate the thermodynamic properties of materials 
at high pressures and high temperatures. In Fig.4, the 
variation of Grüneisen parameter γ with pressure and 
temperature are displayed, from which it can be found that 
the Grüneisen parameter γ decrease exponentially as the 
pressure increases, however, as the temperature enhanced 
Grüneisen parameter γ increase fast. It is also seen that 
Grüneisen parameter γ of ZnNNi3 is bigger than that of 
MgNNi3 and AlNNi3. Moreover, the Grüneisen parameter 
of MgNNi3 is nearly the same as AlNNNi3 with 
temperature up to 1000K.  
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4. Conclusions 
 
The structural, elastic properties, mechanical stability 

and thermodynamic properties of the anti-perovskite 
superconductor MNNi3 (M=Zn, Mg, Al) under pressure 
are investigated by first-principles calculations with the 
generalized gradient approximation for exchange and 
correlation for the first time. The calculated structural 
parameters elastic properties of MNNi3 are in good 
agreement with experimental data and the available 
theoretical data. From the high pressure elastic constants, 
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ZnNNi3, MgNNi3 and AlNNi3 are predicted that they are 
not stable at a pressure above 61.2GPa, 113.3GPa and 
122.4GPa, respectively. Finally, the thermodynamic 
properties such as the Grüneisen parameter and bulk 
modulus (BT and BS) under pressures and temperatures are 
also successfully obtained. By the present work, the 
mechanical behaviors of ZnNNi3, MgNNi3 and AlNNi3 
show very big similarity. It should be used to stimulate 
future experimental and theoretical work. 
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